Книга посвящена методике решения задач высшей математики при помощи программы Mathcad. Приводятся примеры расчета типовых задач линейной алгебры, математического анализа, дифференциальных уравнений, статистики и обработки данных. Объясняется работа численных алгоритмов, заложенных во встроенных функциях и операторах системы Mathcad. Предлагаются неочевидные приемы решения актуальных задач современной вычислительной науки.
Бесконечно малая величина - это числовая функция или последовательность, которая стремится к нулю. Исчисление бесконечно малых - общее понятие для дифференциальных и интегральных исчислений, составляющих основу современной высшей математики. Анализ бесконечно малых - вне всяких сомнений, наиболее мощное и эффективное средство изучения природы, когда-либо созданное учеными. Становление этого понятия связано с именами блистательных математиков: Архимеда, Исаака Ньютона, Готфрида Вильгельма Лейбница, Огюстена Луи Коши и Карла Вейерштрасса. В этой книге идет речь об анализе бесконечно малых и его удивительной истории.
Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир...
В мире существует несколько основных видов искусства, но музыка, безусловно, занимает в этом ряду главенствующую позицию. Неспроста многие великие мыслители отдавали пальму первенства именно музыке: она — удивительный симбиоз чистого вдохновения и строгого расчета, полета фантазии и рационального подхода. Музыка — живое доказательство единства творчества и математики. Из этого выпуска читатель почерпнет множество интересных фактов. Какие произведения нельзя сыграть, не разгадав их загадку? Почему существуют гармонические и диссонирующие аккорды? Благодаря чему мы в состоянии на слух отличить скрипку от трубы?
Научно-популярный физико-математический журнал, рассчитанный на массового читателя. Материалы, накопленные в журнале за годы его существования, практически бесценны. Идею создания издания такой тематики высказал П.Л. Капица в 1964 году.
Научно-популярный физико-математический журнал, рассчитанный на массового читателя. Материалы, накопленные в журнале за годы его существования, практически бесценны. Идею создания издания такой тематики высказал П.Л. Капица в 1964 году.
Многие числа обрели особое арифметическое или мистическое значение еще в древности. В наши дни эти представления трансформировались в нечто другое, и те же числа «обросли» новыми мифами. Более того, были изобретены новые числа, одни из которых получили имя, а другие - и фамилию. Сегодня мы можем говорить о натуральных, целых, вещественных, рациональных, иррациональных, мнимых, трансцендентных, трансфинитных и многих других числах. Из этой книги вы узнаете, что означали числа в древности и какие замечательные свойства они приобрели в современном мире.
Наш мир полон не только букв и цифр, но и самых разных изображений. Это картины, фотографии, произведения искусства, многочисленные схемы... Вспомните схему вашей линии метро или автобусного маршрута — это всего лишь линия с точками, рядом с которыми подписаны названия остановок. Подобные схемы из точек и линий называются графами. Именно о них вы узнаете, прочитав этот выпуск.
Многие числа обрели особое арифметическое или мистическое значение еще в древности. В наши дни эти представления трансформировались в нечто другое, и те же числа «обросли» новыми мифами. Более того, были изобретены новые числа, одни из которых получили имя, а другие - и фамилию. Сегодня мы можем говорить о натуральных, целых, вещественных, рациональных, иррациональных, мнимых, трансцендентных, трансфинитных и многих других числах. Из этой книги вы узнаете, что означали числа в древности и какие замечательные свойства они приобрели в современном мире.
Принадлежащее Архимеду изречение: "Дайте мне точку опоры, и я переверну весь мир", — знает каждый образованный человек. Его разработки и исследования изменили весь мир вокруг нас, заложив основы множества математических открытий и механики. С самого детства он полюбил науку, так как родился в семье ученого и отец с ранних лет приобщал сына к размышлениям.
Статистика - наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики - получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков. Читатель совершит экскурс в теорию вероятностей, а также узнает о статистических исследованиях, предвыборных опросах и о том, какие рассуждения лежат в основе всех статистических тестов.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги - рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Серия "Мир математики" — уникальный проект, позволяющий читателю прикоснуться к тайнам такой удивительной науки - как математика.
В традиционных курсах по методам решения задач математической физики рассматриваются прямые задачи. При этом решение определяется из уравнений с частными производными, которые дополняются определенными краевыми и начальными условиями. В обратных задачах некоторые из этих составляющих постановки задачи отсутствуют. Неизвестными могут быть, например, начальные условия, граничные режимы, коэффициенты и правые части уравнений. Обратные задачи часто являются некорректными в классическом смысле, и для их приближенного решения приходится применять методы регуляризации. В книге рассмотрены основные классы обратных задач для уравнений математической физики и численные методы их решения.
На первый взгляд теорема Ферма кажется очень простой. Те, кто сталкиваются с ней впервые, обычно недоумевают:почему на протяжении 380 с лишним лет математики не могли ее доказать? Однако вскоре подобные иллюзии рассеиваются, и становится понятно: теорема Ферма - одна из сложнейших математических задач всех времен. Данная книга повествует не только о Пьере Ферма и его теореме, но также о британце Эндрю Уайлсе - гениальном математике, который бросил вызов грандиозной задаче и вышел из этой схватки победителем.
Какова взаимосвязь между играми и математикой? Математические игры - всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика - две стороны одной медали.
Уникальная и занимательная коллекция, которая поможет ответить на самые каверзные вопросы математики сопровождающие нас изо дня в день, хотя мы об этом можем даже не догадываться. Увлекательное путешествие через вселенную математики, во время которого вы познакомитесь с ее самыми интересными сторонами, а также с великими мыслителями, которые заложили для нее фундамент.
Уникальная и занимательная коллекция, которая поможет ответить на самые каверзные вопросы математики сопровождающие нас изо дня в день, хотя мы об этом можем даже не догадываться. Увлекательное путешествие через вселенную математики, во время которого вы познакомитесь с ее самыми интересными сторонами, а также с великими мыслителями, которые заложили для нее фундамент.
Пособие может быть использовано в качестве дополнительного материала к учебникам по математике любого учебно-методического комплекта. Основная цель пособия — совершенствование вычислительных навыков, развитие важнейших интеллектуальных качеств учащихся: логического мышления, оперативной памяти и внимания.
Книга создателя жанра «занимательной науки» с присущим автору блеском и остроумием рассказывает о секретах математики, которые обычно остаются за пределами школьных учебников. Помимо математических приёмов и алгоритмов читатель узнает много удивительных фактов из самых разных областей науки.